

Driving Efficiencies With Software Tools and Automated Design

June 2023

cefc

Australian buildings and infrastructure: Opportunities for cutting embodied carbon

Industry report

25 King: Cred Lendlease

Latrobe St: Cred TTW

 75% Reduction on BAU (biogenic included)

 74% Reduction on BAU (biogenic included)

Biophilia

Biophilia

s.com.au/wood-at-work

by Andrew Knex,

Howard Parry-Husbands Pollinate** February 2018

Ethics Isn't Enough

Driving Cost Efficiencies

Bottlenecks = Key To Efficiency

Professionals

11

Professionals

2. Supply Chain Capacities

3. Land and Forest Utilisation

Co-ordination and Shop Drawing

Building

Auckland City Mission Image Credit: XLam

CLT

DfMA

Design for Manufacture

DfMA

Design for Manufacture

Design for Assembly

15

Level 1 – The Shoehorn Approach

Design paradigm of concrete construction

Level 1 - The Shoehorn Approach

Design paradigm of concrete construction

Level 2 – Designing With Components

- Grids conducive for mass timber
- Square peg in a square hole
- Function follows form

Level 1 – The Shoehorn Approach

Design paradigm of concrete construction

Level 2 – Designing With Components

- Grids conducive for mass timber
- Square peg in a square hole
- Function follows form

Level 3 – Designing with Scalability

- Designing with constraints in supply chain to alleviate bottlenecks
- Improves processes and most cost effective
- Replication eliminated in the supply chain

Designing With Scalability

Foreward by TIM FERRISS THE ALMANACK OF NAVAL RAVIKANT A guide to wealth and happiness

ERIC JORGENSON

Leverage

People

Henry Ford

Ray Croc

Sam Walton

Leverage

People

Henry Ford

Ray Croc

Sam Walton

Money

Warren Buffet George Soros Carl Icahn

Leverage

People

Henry Ford

Ray Croc

Sam Walton

Money

Warren Buffet George Soros Carl Icahn Zero Marginal Cost of Replication

Mark Zuckerberg Larry Page / Sergey Brin Reid Hoffman

Zero Costs of Replication

Replication Costs in Construction

Today

Tomorrow?

Deliberate Strategies

Emergent Strategies

Our Bit

Timber Demand Infrastructure

- Approx 1/300 Engineers Are Mass Timber Specialists
- It is difficult to become a mass timber specialist.

Problem 1

This isn't taught at university. We need to provide the best education on the job.

Problem 2

Timber Specialist Engineer Has invested in the tools, knowledge and processes. Can offer mass timber when it is the correct solution.

0

Engineer

Non Timber Specialist Engineer Starting point of all engineers.

No experience from university. First job ran at a los

(/investment). Guides project to the comfort zone of traditional materials

Engineers are reinventing the wheel doing the same tasks. We can provide the industry infrastructure to make it cheaper for engineer's on the job, and reduce project design fees.

Timber Demand Infrastructure

	Approach	Design Tools Development (Hours)	Design Learning (Hours)	Geelong - Post and Beam	240 Vic St - CLT Wall / CLT Floor	Pheonix Apartments
CLT Floor (Ambient)	Excel	26.7	21.3	0	0	0
CLT Floor (Fire)	Excel	17.3	21.3	٢	0	0
CLT Wall (Ambient)	Excel	26.7	21.3	0	0	0
CLT Wall (Fire)	Excel	16.O	21.3	0	٢	0
Mass Timber Beam (Ambient)	Excel	23.3	4.7	0	0	0
Mass Timber Beam (Fire)	Excel	2.7	4.7	0	0	0
Mass Timber Beam Penetration and Reinforcement	Excel	10.0	4.0	0	0	0
Mass Timber Column (Ambient)	Excel	9.0	8.7	٥	0	0
Mass Timber Column (Fire)	Excel	6.7	6.0	0	0	0
Mass Timber K-brace (Stability)	Excel	1.3	5.3	٢	0	0
CLT Floor Point Load (Ambient)	Excel	4.0	7.3	۲	0	0
CLT Floor Point Load (Fire)	Excel	2.0	6.7	0	0	0
CLT Lintel Design	Excel	9.3	8.O	0	0	0
CLT In-plane Strength (Shear Wall / Diaphragm)	Excel	11.3	13.3	0	0	0

Post and Beam

Light-frame Walls / Mas Timber

CLT Wall and CLT Floor

Timber Demand Infrastructure

506 Unpaid Learning Hours

466 Unpaid Learning Hours

505 Unpaid Learning Hours

	Cost	Design Fee	Net Profit
Full Journey	\$160,100	-	
Geelong - Post and Beam	\$101,300	\$80,000	-\$21,300
240 Vic Street	\$101,000	\$40,000	-\$61,000
Phoenix Apartments	\$93,200	\$60,000	-\$33,200

Table 5

CLT Floor Fire Calculator.

1. Overview.

2. Insert variables.

3. Review Calculations and Export.

Team

Partnerships

Suppliers

•••

New to mass timber structures or the provisions or provision of the new timber standard NZS AS 1720.1? We are happy to announce a collaboration between TDS, Timber Design Centre and SESOC with CLT Toolbox to provide technical su ...see more

+ Follow

The Timber Design Centre (TDC), New Zealand Timber Design Society (TDS) and Structural Engineering Society (SESOC), are all collaborating to provide technical advice and validation of the new design tools developed by CLT Toolbox ...see more

CC Marco Arcolini and 33 others

Investors

Partnerships

Jan 23 Feb 23 Mar 23 Apr 23	May 23 Jun 23 Jul 23 Aug 23 S	ep 23 Oct 23 Nov 23 Dec 23 Jan 2
Release One: Mass Timber Central.	Release Two: TBC. Release	Three: TBC.Release Four: TBC.
Release One. Mass Timber.	Release Option. Light-Frame.	Release Option. Connections. (Mass Timber)
 CLT Floor Ambient CLT Floor Fire Beam Column CLT Wall Ambient CLT Wall Fire Loading Wall 	 Stud Design Floor Design (Joists / Floor Trusses Etc) Shear Wall Design Diaphragm Design Light-Frame Crushing Tolerances Design Beam Design 	 Full Connection Library Including: Screw Design (EC5/NZS) Brackets Beam / Column Proprietary Connections. Shear
 Loading Column Beam Penetration & Strengthening Lintel CLT Shear Wall/Diaphragm 	Stud Loading Release Option.	Release Option. Connections. (Light-Frame)
 CLT Floor Point Load Ambient CLT Floor Point Load Fire Tolerances Crushing 	 Hybrid. Steel Beam & Steel Column. Timber Concrete Composites. 	 Full Connection Library Including: Drag Straps Brackets Screw Design

Thanks ③