Building higher in timber? New free WoodSolutions Technical Design Guides

Discover a wide range of information, exclusive to the three new WoodSolutions Technical Design Guides:

- 37: Mid-rise Timber Buildings
- 38: Fire Safety Design of Mid-rise Timber Buildings
- 39: Robustness in Timber Structures

Written by experts, these Guides give you the information you need to make the most of the recent National Construction Code (NCC) changes. The NCC now allows Deemed to Satisfy (DTS) provisions for Class 2, 3 and 5 buildings up to an effective height of 25m.

These and other Technical Design Guides, along with more free information and advice about designing and building with wood and wood products, are available from woodsolutions.com.au.

It turns out that timber buildings aren’t just healthier for the environment but for the humans who live in them, producing benefits similar to those of being out in nature: lower blood pressure and heart rate. A 2009 study by Austria’s Human Research Institute shows that children taught in timber buildings experience less stress and concentrate better; timberbuilt retirement villages promote tranquility, according to studies in the UK and Finland; and in Japan, positive benefits have been noted in neurological clinics constructed from wood.

People are “innately drawn towards wood, which elicits feelings of warmth, comfort and relaxation…” concludes a study by Planet Ark published last year.

Jonathan Evans says there is now a push in the UK and Germany for homes for the elderly to be built out of wood.

“There is a strong belief that timber buildings provide a more serene environment; they feel more human,” he says.

But wouldn’t a wooden skyscraper risk turning into a towering inferno if a fire broke out? Not with mass timber technology, according to Jose Torero Cullan, a professor of fire safety engineering at the University of Queensland. He has been testing fireproofing in wooden buildings, including a prototype of a small apartment in which the furnishings are consumed by flame, but the walls and ceilings are not. “If a fire begins in the outer layers of the CLT, panels will only char, protecting the core,” he says. This means that if a timber high-rise did ignite, the structural integrity of the building should be maintained (even steel buckles under extreme heat, turning to spaghetti at about 260°C).

A construction challenge for all skyscrapers, but particularly lighter, timber ones, is swaying. Wind pushes against structures and accelerates upward in what’s known as the stack effect. One solution to reduce sway is to add concrete elements in the middle storeys and roof.

“A timber high-rise of 25 storeys is manageable and feasible,” says Andrew Nieland, an architect with Lend Lease, the company behind Melbourne’s Fort and Sydney’s International House. “Beyond that, you need a hybrid building, one with concrete or steel inclusions. Even so, you’ll still save an enormous amount of carbon emissions if the bulk of the building is timber.”

The beauty of timber is that it can work in multiple design languages, adds Nieland. A structure can be given curves, round corners, and virtually any form of embellishment. “Timber is a traditional building material that can be used in a 21st-century way,” he says. That very lightness of timber can be an advantage in seismically active areas if the buildings are well constructed (in Haiti, Nepal and Japan, many timber buildings remained standing amid a sea of grey rubble in the wake of major earthquakes). And timber high-rises may have a role to play in areas of soft soils (Shanghai, for example, has sunk 40 centimetres in the past 50 years, a legacy of its soft soils and global warming, possibly made worse by the weight of its vast mountain of skyscrapers).

“Timber buildings have the resilience of trees; they can crack and move. Concrete buildings have a cracking point; once they start to crumble, they have to be rebuilt,” observes Dylan Brady, chief architect with D告bel Architecture in Victoria. Brady has designed an eight-storey CLT building in Punt Road, Melbourne, which he describes as “townhouses in the sky”.

The other value of a timber high-rise, adds Brady, is that its materials can be recycled at the end of its lifespan (estimated at 150 years at least). “Timber buildings and timber hybrids are at the cutting edge, but it’s important not to be over-zealous,” he cautions. “They are perfect for a growing number of – but not all – situations.”

Cambridge’s Michael Ramage believes the most likely roadblock ahead for tall wooden towers is not engineering, but public attitude. He admits the idea of living in a timber skyscraper takes some getting used to. “It’s difficult to get people out of the mindset that steel or concrete are intrinsically more secure,” he says. “But isn’t it great that the building material showing the most promise in the world today is the one that humans have had an affinity with since we started looking for shelter beyond the caves?”

The rise of the Plyscrapers

Timber buildings are reaching towards the skies, thanks to breakthroughs in super-strong wood.

This article is reproduced with the permission of The Age, Good Weekend, published by Fairfax Media. The article was first published on August 27, 2016. © 2016 Greg Callaghan All Rights Reserved
If there's one way to get people talking, it's to draw up plans for a new skyscraper and plant it smack in the middle of an iconic skyline like London’s, overlooking majestic St Paul’s Cathedral. Londoners have nifty nicknames for the crop of eccentrically shaped skyscrapers that have popped up over the last decade or so – the Gherkin, the Cheese Grater and the Walkie-Talkie – but if a small group of British architects and engineers has their way, the historic skyline may be welcoming a bold geometric addition with a new moniker: the Toothpick.

This sleek, 80-storey tower will soar 300 metres above the Barbican. It’s called the world’s tallest wooden building. This means that if a timber high-rise is blown down, it won’t contribute to a towering inferno. That very lightness of timber can be a major advantage in fire engineering, which is why there is a strong belief in timber’s potential as a major part of our climate-change policy, but that’s likely to change in the next decade or so, says Vancouver architect Michael Green, an internationally recognised expert in building big with wood. While timber plantations are no substitute for continued deforestation – virgin rainforests have irreplaceable ecological value – it’s one way to reduce mankind greenhouse gases.

“European crop forests are expanding, while the use of trees is declining because we’re using less paper,” explains Michael Ramage. “We’re actually cutting down far less than we are growing, at a time when timber as a structural material is achieving a higher value. Timber plantations would also provide struggling farmers in industrialised countries with a new source of income.”

A greater use of timber in construction – together with more trees, parks, green roofs and vertical gardens – will also reduce the urban heat island effect: the phenomena of higher temperatures experienced in cities due to concrete and asphalt soaking up thermal energy and radiating it back into the atmosphere. More timber buildings and large, shade-bearing trees would mean a lower-gauge urban thermometer – and cleaner air in cities (a mature tree removes 60 to 70 per cent of the pollution a sapling). A report by the UN Food and Agriculture Organisation released in July called for more wood and wood-based materials to be used in construction – the timber lift shaft and core of the building, for instance, lift shaft and core of the building, for instance.

And here’s the scary part: more than 70 per cent of energy-related carbon dioxide emissions, says Scientific American, stem from concrete production. In fact, just as the US has in its entire history, concrete, steel and timber buildings have become far more energy-efficient in recent years, thanks to better insulation, solar paneling, vegetated roofs, rainwater recycling and low-watt lighting, but in the battle for green supremacy, nothing touches timber. It’s the 20th-century new building material, a form of embellishment. “Timber is a traditional building material that can be mass-produced, manageable and feasible,” says Andrew Nieland, an architect with Lend Lease, one of the main contractors on the project.”

But if it’s a super-tall, iconic skyscraper you’re after, Michael Ramage, director of Cambridge University’s Centre for Natural Material Innovation and an internationally recognised expert in building big with wood, is your man. He insists that the timing is right for projects like the Toothpick, which he designed with engineers from London’s PPL Architecture. While the latest steel-and-concrete skyscrapers may look sleek and cutting-edge, most come with old-world energy bills, insists Ramage. “Timber has a very important place in the future construction of medium- and large-scale buildings,” says Ramage, in his soft American accent (he grew up in New York state), in a phone interview from his office at Cambridge. “It can be cost-effective, faster to build, and result in more attractive high-rises.”

Timber is our only renewable construction material. Absorbing CO₂ from the air, forests – from wilderness to crop plantations – are huge carbon stores or “sinks”, and a tree’s wood continues to store carbon when it becomes a timber beam hanging up a ceiling, a process known as carbon sequestration. It’s been estimated that a timber beam of one cubic metre contains over one tonne of CO₂. Compare that to steel, concrete or plastics: not only do they manufacture products that require large quantities of electricity and water, but instead of storing carbon, steel and concrete emit CO₂. For the equivalent one cubic metre beam, concrete releases two tonnes of industrial emissions (steel releases even more). By the time a concrete skyscraper has been erected, it has produced tens of thousands of tonnes of CO₂. It has been estimated that as a whole, the concrete industry has five times the carbon footprint of the world’s airline industry.

Right now, agroforestry may not form a major part of our climate-change solutions, but it’s a common-sense reason. It’s a fire risk. It’s not rigid or heavy enough for high-rise construction – the challenges are certainly real, but those at the forefront of engineered wood construction insist most are being swiftly overcome – if they haven’t already.

On a crisp, sunny morning in late January, as droves of office workers scurry across Sydney’s new City Walk Bridge to their jobs in Barangaroo’s gigantic glass towers opposite, architect, Jonathan Evans grabs my arm, stopping me in my tracks. We’re only 50 metres from the site of Evans’ latest project, International House Sydney, a seven-storey timber office building now under construction at the gateway of Barangaroo. Evans is keen for me to get a first glimpse – from this elevated vantage point – of a design flourish on its façade. It turns out to be a dazzlingly elegant two-storey-high wooden colonnade stretching the entire length of the building: it will be the first thing pedestrians see as they cross into Barangaroo from the city side. “The colonnade links all of Barangaroo from north to south,” says the tall, soft-spoken Evans, eying his handshake, which he designed with veteran architect Alec Tamisie. “If you have a front door, you want it to be inviting and attractive, right?”

What strikes me first as we enter the site of International House is how, to our relief, none of our regulation high-vis jackets, hard-hats and steel-capped boots, is the faint woody smell of the timber. The ash already completed. Not only do the exposed CLT ceilings and walls, made from pine and spruce, feel warm and inviting too, but there’s that pleasant, resinous scent (a change from the acrid smell of freshly poured concrete). But it’s when you step out of one of the construction – the timber lift shaft and load-bearing walls – that you realise this is a building (apart from its concrete foundations) built entirely of CLT (for floors, ceilings and walls), and glulam (for beams and posts).

I’m the first journalist to visit the site, and I notice something else besides the absence of concrete odour; no thundering din. Because the massive timber panels, prefabricated in Austria, are craned, slotted and screwed into position with no noise at all, there’s far less construction noise – and, I’m told, much less back-and-forth of concrete trucks and other heavy vehicles, thus lightening traffic congestion in local streets and reducing noise.

CLT and glulam structures of this size typically require only a handful of “timber installers” to build and complete within a shorter time. International House Sydney will be finished next month – significantly earlier than an equivalent concrete building. “What’s more, International House will have superior thermal and acoustic properties compared to most of its neighbours.”

Evans is among a small club of architects in Australia who love designing with timber, especially on large-scale projects. He just loves its look, the woodsy smell of the three storeys above his head, the faint woodsy smell of the three storeys above his head. From Chippendale office a few weeks earlier, he lifted up a piece of CLT the size of at least two bread loaves. “As architects, we like to touch and feel the materials,” he explained. “Timber has a tactile quality like no other. You can tell that the new generation of timber high-rises wear their wood-grain on their sleeve. The architecture industry, for example, is covered in cladding. International House, however, celebrates its timber structure from its clononde to its roof.”
Just as steel, glass and concrete high-rises: skyscrapers. At right angles under extreme pressure, cross-laminated timber or “CLT” name suggests, will be made almost as the name suggests, will be made almost entirely from wood. Thanks to significant breakthroughs in superfast dry-stacked wood products, the past six years have seen a new wave of structural materials, which include cross-laminated timber or “CLT” a material consisting of layers of wood glued together at right angles under extreme pressure to form giant wall, ceiling and floor panels (glued together along the same grain for beams and posts). And here’s another nickname for these wooden high-rises: plyscrapers.

If there’s one way to get people talking, it’s to draw up plans for a new skyscraper and then pin it in the middle of an iconic skyline like London’s, overlooking majestic St Paul’s Cathedral. Londoners have nifty nicknames for the crop of eccentrically shaped skyscrapers that have popped up over the last decade or so – the Gherkin, the Cheese Grater and the Walkie-Talkie – but if a small group of British architects and engineers have their way, the historic skyline may be welcoming a bold geometric addition with a new moniker: the Toothpick. This sleek, 80-storey tower will soar 300 metres above the Barbican Centre, a gloomy, grey concrete slab whose company Waugh Thistleton is keen for me to get a first glimpse – from this elevated vantage point – of a design flourish on its façade. It turns out to be a dazzlingly elegant two-storey-high wooden colonnade, stretching the entire length of the building; it will be the first thing pedestrians see as they cross into Barangaroo from the city side. “The colonnade links all of Barangaroo from north to south,” says the talk-show–spoken Evans, eying his handwritten, which he designed with veteran architect Alec Tarmey. “If you have a front door, you want it to be inviting and attractive, right?”

Many are betting their careers and money on a big future for high-rise “big timber”. And the good news is that some of those at the cutting-edge of this new timber wave are in Australia.

Right: The 14-storey Tree building in Bergen, Norway, which last year surpassed Australia’s first real timber high-rise, the 10-storey Fort apartment building in Melbourne, built last year. The Tooth will soon be dwarfed by the 24-storey Ho-Ho tower in Vienna, due for completion late next year, an 18-storey building at the University of British Columbia, which will open next year, and a 34-storey tower in Stockholm, earmarked for completion in 2023. Earlier this year French architect Jean-Paul Viguier won a design competition for Hyperion, an internationally recognised residential tower in Bordeaux featuring hanging gardens, to be finished in 2020. Sydney theatre’s international House, a striking timber office complex in Barangaroo, to open next year.

And here’s the scary part: more than 70 per cent of energy-related carbon dioxide emissions, says Scientific American, come from the planet’s vast new megacities. It’s estimated that China has poured more concrete in the past six years than the US has in its entire history. Yes, concrete and steel buildings have become far more energy-efficient in recent years, thanks to better insulation, solar paneling, vegetated roofs, rainwater harvesting and low-watt lighting, but in the battle for green supremacy, nothing touches timber. If 30% of today’s buildings sourced from timber plantations would provide a carbon sink in any heavily developed city.
Building higher in timber?
New free WoodSolutions Technical Design Guides

Discover a wide range of information, exclusive to the three new WoodSolutions Technical Design Guides:

- 37 - Mid-rise Timber Buildings
- 38 - Fire Safety Design of Mid-rise Timber Buildings
- 39 - Robustness in Timber Structures

Written by experts, these Guides give you the information you need to make the most of the recent National Construction Code (NCC) changes. The NCC now allows Deemed to Satisfy (DTS) provisions for Class 2, 3 and 5 buildings up to an effective height of 25m.

These and other Technical Design Guides, along with more free information and advice about designing and building with wood and wood products, are available from woodsolutions.com.au.

It turns out that timber buildings aren’t just healthier for the environment but for the humans who live in them, producing benefits similar to those of being out in nature: lower blood pressure and heart rate. A 2009 study by Austria’s Human Research Institute shows that children taught in timber buildings experience less stress and concentration better, timber-built retirement villages promote tranquility, according to studies in the UK and Finland, and in Japan, positive benefits have been noted in neurological clinics constructed from wood.

People are “inately drawn towards wood, which elicits feelings of warmth, comfort and relaxation...” concludes a study by Planet Ark published last year.

Jonathan Evans says there is now a push in the UK and Germany for homes for the elderly to be built out of wood.

“There is a strong belief that timber buildings provide a more serene environment; they feel more human,” he says.

But wouldn’t a wooden skyscraper risk turning into a towering inferno if a fire broke out? Not with mass timber technology, according to José Toreno Cullen, a professor of fire safety engineering at the University of Queensland. He has been testing fireproofing in wooden buildings, including a prototype of a small apartment in which the furnishings are consumed by flame, but the walls and ceilings are not. “If a fire begins in the outer layers of the CLT, panels will only char, protecting the core,” he says. This means that if a timber high-rise did ignite, the structural integrity of the building should be maintained (even steel buckles under extreme heat, turning to spaghetti at about 260°C).

A construction challenge for all skyscrapers, but particularly lighter, timber ones, is sway. Wind pushes against structures and accelerates upward in what’s known as the stack effect. One solution to reduce sway is to add concrete elements in the middle storeys and roof.

“A timber high-rise of 25 storeys is manageable and feasible,” says Andrew Nielsen, an architect with Lend Lease, the company behind Melbourne’s Fort and Sydney’s International House. “Beyond that, you need a hybrid building, one with concrete or steel inclusions. Even so, you’ll still save an enormous amount of carbon emissions if the bulk of the building is timber.”

The beauty of timber is that it can work in multiple design languages, adds Nielsen. A structure can be given curves, round corners, and virtually any form of embellishment. “Timber is a traditional building material that can be used in a 21st-century way,” he says.

That very lightness of timber can be an advantage in seismically active areas if the buildings are well constructed (in Haiti, Nepal and Japan, many timber buildings remained standing amid a sea of grey rubble in the wake of major earthquakes). And timber high-rises may have a role to play in areas of soft soils (Shanghai, for example, has sunk 40 centimetres in the past 50 years, a legacy of its soft soils and global warming, possibly made worse by the weight of its vast mountain of skyscrapers).

“Timber buildings have the resilience of trees; they can heal and move. Concrete buildings have a cracking point; once they start to crumble, they have to be rebuilt,” observes Dylan Brady, chief architect with Durbel Architecture in Victoria. Brady has designed an eight-storey CLT building in Punt Road, Melbourne, which he describes as “townhouses in the sky”.

The other value of a timber high-rise, adds Brady, is that its materials can be recycled at the end of its lifespan (estimated at 150 years at least). “Timber buildings and timber hybrids are at the cutting edge, but it’s important not to be over-zealous,” he cautions. “They are perfect for a growing number of – but not all – situations.”

Cambridge’s Michael Ramage believes the most likely roadblock ahead for tall wooden towers is not engineering, but public attitude. He admits the idea of living in a timber skyscraper takes some getting used to. “It’s difficult to get people out of the mindset that steel or concrete are intrinsically more secure,” he says. “But isn’t it great that the building material showing the most promise in the world today is the one that humans have had an affinity with since we started looking for shelter beyond the caves?”

This brochure is printed on FSC certified, 100% recycled post-consumer waste. Cert. no. SCS-COC-003869

Image above: courtesy of FLJ/Architecture

Timber buildings are reaching towards the skies, thanks to breakthroughs in super-strong wood.

This article is reprinted with the permission of The Age, Good Weekend, published by Fairfax Media. The article was first published on August 27, 2016. © 2016 Greg Callaghan All Rights Reserved