Home

Forte Living

Forte Living is a 10 storey apartment building made from cross laminated timber (CLT).  Standing at 32.2m it is the world tallest modern timber apartment building and highest made from CLT. It is also the first Australian building to be made from CLT.

The building comprises 759 CLT panels of European spruce (picea abies), weighing a total of 485 tonnes. The spruce for the CLT panels was grown and harvested in Austria, the panels were manufactured then shipped to Australia in 25 shipping containers.

The building arrived like flat pack furniture, including the 5,500 angle brackets and 34,550 screws required for erection.

Forté will positively affect the environment by directly storing (sequestering) 761 tonnes CO2. When considering the emitted CO2 that would occur if an equivalent concrete or steel buildings was used, the advantage would increases to 1,451 tonnes of CO2 or the equivalent of taking 345 cars off the road for a year.

Using timber is also estimated to save 7.7 ML of water and also lower eutrophication (the supply of excess nutrients to the water system) by 75%.

In addition, the smart design and efficient systems of the building could save residents an average over $300 per year on energy and water bills. The building is targeting a 5 star green star As Built rating.

You can view a short time lapse video of the building of Forte here

Fire engineering solutions are described in Structure and Interior tabs.

Acoustic advantages and environmental benefits are described in the Exterior tab.

Architect: Andrew Nieland / Lendlease

Engineer: Lendlease

Builder: Lendlease

 

Cross laminated timber (CLT) is a panel product built up from narrow timber boards, about 20 mm thick, that are laid side by side to form layers. Like plywood, each succeeding layer is laid perpendicular to the preceding layer. Each layer is then glued and the entire panel is pressed and trimmed to size.

Each panel is then cut to specific dimensions from the CAD drawing using a CNC router that uses a computer guided saws and drills that forms the panel to its final shape. At this stage opening for doors and windows and channels for electrical wiring and other services were also cut into the panels.

Forte's ground floor and first storey floor slab were constructed from geopolymer concrete. This was due to the larger spans required in the retail space and general good practice to keep timber away from the ground.

Once the concrete had set, the CLT panels were transported from their storage site, a disused wharf shed a short distance away. The panels were then raised into their final position and connected together with screws and metal brackets. The first panels erected were those that formed the stair and lift cores, these were stood vertically. Once the cores were in place, panels were placed on their sides to form internal and external walls. The panel width is the storey height of the building.

Panels were then laid on top of the walls to form floors. The process was repeated until the full height of the building was reached. The roof was constructed in the same method as each floor.

The exterior cladding was applied as the scaffolding and screen were removed, revealing the building as it was 'unwrapped'.

Building with Wood

Durability

 

CLT is made from European spruce which is considered as non-durable i.e. Class 4 timber. Protection from termites and weather are the two key durability issues addressed.

Termite protection is provided by a concrete slab at ground level and then protected by TermiMesh. This is very similar to how a house is protected.

Durability from weather is achieved by a rain screen of aluminum panels. Supplementing this there is a cavity between the rain careen panels and CLT that allows any water to drain out.

The balconies and roof are constructed with CLT and have a water proof membrane finish.

Building regulations

Building Classification

Class 2 - apartment building (levels 1 to 9)
Class 6 - retail building (ground)

Fire

This building is classified by the NCC as mixed building classification as it has retail (Class 6) on the ground floor and apartments (Class 2) for the remainder of storeys.

Fire Resistance

 

As the building has a Rise in Storey of 9, the building's Type of Construction is A, Type A construction deemed-to-satisfy provisions limits the use of timber in some applications.

Type A construction deemed-to-satisfy (DtS) provision places limits on the materials that can be used in the building construction as well as the level of fire resistance required. For external walls they are required to be constructed from non-combustible materials. Load bearing internal walls required to achieve a fire rating are required to be constructed from concrete or masonry. Lift shafts and Fire isolated stairs are also required to be non-combustible.

The use of CLT can not comply with the non-combustible DtS provisions of the NCC. To meet the NCC an Alternative Solution was proposed to satisfy the relevant performance provsions. The design solution met most of the DtS fire resistance levels required within Victoria for this building classification with the exception of the balcony floors and the external walls.

In addition, the design solution ensured that:

  • Structurally, the building has been designed through disproportionate collapse. That is, the CLT has been analysed in relation to ensuring that should a wall section be damaged, that the remaining structure is able to take the load.
  • Fire resistance is initially achieved through the direct fixing of fire grade plasterboard combined with the charring of the timber ensuring that the structural component required is maintained through the provision of sacrificial layers. That is, each CLT panel is typically, 5 layer 128 mm thick used for the walls and 5 layer 148mm thick CLT panels for the floors. Structurally, only 3 layers are required providing 2 layers of additional protection from the sacrificial layers of timber.
  • The connections of the wall panels to floor panels maintain the appropriate fire ratings through being incorporated within the centre layer of the panel or through being covered by screed / fire grade plasterboard.
  • The fire isolated stair shaft and lift shaft provided their own unique challenges particularly in relation to the deemed to satisfy requirement for fire stairs to retain their integrity in the case of local failure or damage to the shaft. This has been achieved through the design of a double shaft system in which each shaft achieves the required fire rating however do not rely on the other for structural connection.

In the consultation with the Melbourne Metropolitan Fire Brigade, a site specific construction methodology and plan was developed to take into consideration specific requirements when working with timber. This included items such as ensuring that the fire hydrant system was operational from when the timber construction commenced (as opposed to when the building reached an effective height of 12m), site sheds were located more than 10m from the structure, two exits were available off the site and no welding occurred within one hour of the end of the day.

 

 

Fire Regulation Compliance through Alternative Solutions

Gaining Fire Regulation compliance through the Alternative Solution path

Some recent innovative timber buildings have been completed, even though they have not met the National Construction Code (NCC) Deemed-to-Satisfy (DtS) Provisions prescriptive fire requirements.

Deemed-to-Satisfy Provisions of the National Construction Code (NCC) do not allow some building elements to be constructed from combustible materials, such as timber, or they nominate the material that can be used, such as concrete or masonry.

Alternative Solutions may be developed by an accredited/registered Fire Safety Engineer as part of a building solution to allow the use of timber in specific applications not covered by the DtS Provisions of the NCC.

On this page you'll find a summary of the process that can be used to develop Alternative Solutions. Three WoodSolutions Technical Design Guides have been written to summarise the Alternative Solution process for each element. The guides are:

  • #17 Alternative Solution Fire Compliance: Timber Structures (plus separate CAD files)
  • #18 Alternative Solution Fire Compliance: Facades
  • #19 Alternative Solution Fire Compliance: Linings

The above titles are available for download at the base of this page. Please note you must be a registered user and logged in. Registration is fast and free - see the top right hand corner of the page.

The Guides are complemented by case studies on this site that show the documentation and evidence required, these include:

This site also includes other useful information that could help in developing an Alternative Solution.

National Construction Code Compliance - DtS or Alternative Solution

To demonstrate that a building solution complies, it is necessary to show that it meets the relevant performance requirements of the NCC. The performance requirements can be met by either complying with the Deemed-to-Satisfy construction that is acknowledged as fulfilling the NCC's Performance Requirements (prescriptive) requirements or demonstrating that an Alternative Solution satisfies the Performance Requirements, using an appropriate Assessment Method.

An Alternative Solution is defined in the NCC as follows:

"Alternative Solution means a building solution which complies with the Performance Requirements other than by reason of satisfying the Deemed-to-Satisfy Provisions."

Demonstration of Compliance of a Deemed-to-Satisfy Provision

Deemed-to-Satisfy Provisions are specified in the relevant sections of the NCC. In many instances a Deemed-to-Satisfy Provision may reference another document, rule, specification, standard or similar documents. 

Demonstration of Compliance of an Alternative Solution

An Alternative Solution that differs from the Deemed-to-Satisfy Provisions must prove to satisfy NCC Performance Requirements. Suitable assessment methods are identified in the NCC, Volume 1: Section A0.9.

It is important to note that a mixture of Deemed-to-Satisfy Provisions and Alternative Solutions can be used to develop a solution for a building that will meet the Performance Requirements of the NCC. Alternative Solutions can be developed to allow the use of timber-framed construction systems in situations not covered under the Deemed-to-Satisfy Provisions of the NCC.

The process of developing an Alternative Solution

The Alternative Solution process generally begins when the design has progressed to the point where a review by the Building Certifier / Surveyor identifies whether the building complies with the Deemed-to-Satisfy Provisions of the NCC.

Where the building design does not comply with the Deemed-to-Satisfy Provisions, Alternative Solutions are required. To provide consistency in the methodology of formulating fire safety engineering solutions, the Australian Building Codes Board published the International Fire Engineering Guidelines (IFEG), which provides a recommended approach for completing fire safety engineering solutions for an Alternative Solution.

Generally a two stage reporting process is adopted, Fire Engineering Brief (FEB) and a Fire Engineering Report (FER). This involves relevant stakeholders, who in addition to the design team, client and building certifier, and may include the fire brigade, local council, insurer and other interested parties. 

Fire Engineering Brief

The first stage is the development of a Fire Engineering Brief. The purpose of the Fire Engineering Brief is to communicate to the relevant stakeholders and approval authorities the objectives and basic strategy by which the fire safety engineering analysis will be completed. The Fire Engineering Brief is to outline the proposed Alternative Solutions including information on the acceptance criteria and any input parameters expected to be used in each Solution.

Fire Engineering Brief which amongst other things documents:

  • the stakeholder objectives,
  • a trial fire safety strategy for the building,
  • potential variations from the Deemed-to-Satisfy Provisions for the trial fire safety strategy,
  • relevant performance requirements,
  • engineering / assessment method to the adopted,
  • fire scenarios to be assessed, if appropriate, and
  • the acceptance criteria.

The Fire Engineering Brief is distributed for comment and approval by stakeholders, including the Building Certifier/Surveyor and Fire Brigade. Once agreement is received on the Fire Engineering Brief, then the Fire Engineering Report can be developed.

Fire Engineering Report

The second stage is the development of the Fire Engineering Report which details the formulation and analysis of the fire safety design solutions against the fire safety objectives developed in the Fire Engineering Brief process. Registered / accredited Fire Safety Engineers are normally appointed to prepare a Fire Engineering Report in accordance with the method and process described in the International Fire Engineering Guidelines.

The Fire Engineering Report contains all required calculations, analysis of test evidence and fire modelling to support the recommendations for the formulated fire safety design solution for the building. Often Fire Engineering Reports will nominate levels of performance to be achieved by timber products in fire tests, in which case supplementary documentation will need to be submitted to the regulatory authorities.

Typically the Fire Engineering Report will make use of one or more of the following assessment methods permitted by the NCC.

  • Verification methods specified by the NCC, e.g. CVI and CV2
  • Comparison with the NCC's Deemed-to-Satisfy Provisions
  • An analysis of the holistic fire safety strategy performed by a registered Fire Safety Engineer, using methods agreed during the Fire Engineering Brief process and demonstrating compliance with the acceptance criteria also agreed during the Fire Engineering Brief process.

The most common for engineering design are a comparison with the Deemed-to-Satisfy provisions, use of a verification method, or meeting the methods described in Specification A2.2 "Evidence of Suitability".

The Fire Engineering Brief and Fire Engineering Report process are generally undertaken as the design is developed and tender documentation prepared ensuring that the process does not impact on the construction program.

Approvals Process

As the NCC is called into legal effect by each State and Territories' legislation, the approvals process varies between the States and Territories. The Building Certifier/Surveyor should be consulted early to determine the approvals process and likely timelines for each project.

Generally, the Building Certifier/Surveyor is responsible for identifying any deviations from the Deemed-to-Satisfy Provisions and the relevant Performance Requirements to be addressed. They are to review and be responsible for the approval of both the Fire Engineering Brief and Fire Engineering Report. If necessary (for example, due to the complexity of the design), they may seek a third party review of the fire safety engineering design as part of the approvals process.

In many cases, the Fire Brigade are also considered as a "referral authority", requiring the design to be discussed with the local Fire Brigade.

Due to the time associated with reviews by approvals authorities and the inherent risk associated with obtaining approval of Alternative Solutions, time for the completion of the approvals process needs to be taken into account in the project timeline. It is recommended that the Building Certifier/Surveyor is consulted as early as possible as to the circumstances under which they would require a third party review of the fire engineering strategy and whether they would approve the Fire Engineering Brief without having received Fire Brigade comments (as is permitted by the legislation).

Also below: Downloadable CAD details of all relevant drawings in TDG17

The details are available for the following CAD software formats: ArchiCAD (.mod), AutoCAD (.dwg), Revit (.rvt) as well as JPEG and PDF formats

NOTE: Each ZIP file includes a Word document that cross references each CAD detail to the relevant figure in TDG17

 

The exterior of the building is clad with metal commercial façade consisting primarily of AluBond, however parts were also covered with Lysaght and recycled hardwood timber. These finishes provide the rain screen to the CLT structure. 

The balconies to the buildings are an extension of the CLT flooring of the main building structure. The CLT is covered with screed and a water proof membrane that is then finished with tiles.

The CLT used in the balcony floor to each apartment is exposed to the underside. A timber stain and polyurethane seal is used to protect the timber, but other than the finish no additional protection is necessary.

Acoustic advantages

 

The system used in Forte meets and exceeds building code deemed to satisfy minimum requirements. The floor uses a combination of products to deal with airborne sound as well as impact noise. The floors in the living area are engineered timber and any hard surface floors require greater impact noise consideration. This project uses a number of techniques such as concrete screed topping, direct fixed and or resilient mounted plasterboard and suspended ceiling and resilient mat to improve airborne and impact noise similar to standard construction.

Bulk insulation is placed in the cavity of the suspended ceiling and direct fixed plasterboard.

Wall systems use the addition of frames lined with plasterboard to provide acoustic isolation between apartments. 

Environmental Benefits

Carbon storage

485 tonnes of cross-laminated timber (CLT) was used in the building construction.1 This equates to 216 tonnes of stored carbon which absorbed 792 tonnes of CO2 during its growth.2

Lower carbon footprint

In comparison to a standard concrete and steel building Forte reduces CO2 emissions by over 1,451 tonnes.3
That's like taking 407 cars off the road for a year.4
A full life cycle assessment conducted by staff of RMIT University, compared Forte with a standard apartment building constructed with reinforced concrete.5
The carbon footprint of Forte was 22% lower if carbon storage in the timber was included and 13% lower if carbon storage was not included.
If the carbon footprint of the building materials alone were considered, the carbon footprint of the Forte building was 30% lower than the concrete reinforced building.

Renewable & Sustainable Resource

All timber used in Forte is a renewable resource. The CLT is from sustainably managed spruce forests in Austria. 

Green Star

Forte targeted a 5 Star As Built Green Star building in Australia.

Sustainable Forest Management (SFM) Certification

 

All the timber used is chain of custody certified to internationally recognised sustainable forest management standards.

All the CLT used in the building is chain of custody certified to PEFC (Program for the Endorsement of Forest Certification) standards.

All the Australian hardwood engineered floors are chain of custody certified to Australian Forestry Standards (AFS).

1. Andrew Nieland, Lend Lease (2013) Building with Cross-Laminated Timber: is this our future? Available at http://www.timberqueensland.com.au/Docs/News%20and%20Events/Events/Andrew-Nieland_web.pdf

2. Based on 12% moisture content and carbon content of 50.5% (by weight) cited in Durlinger, B., Crossin, E. and Wong, J. (2013) Life Cycle Assessment of a cross laminated timber building. Available at http://www.fwpa.com.au/rd-and-e/market-access/230-life-cycle-assessment-of-a-cross-laminated-timber-building.html. One tonne of carbon in timber is formed by the conversion of 3.67 tonnes of carbon dioxide. Source Forest Wood and Australia's Carbon Balance. Available at http://www.plantations2020.com.au/assets/acrobat/Forests,Wood&CarbonBalance.pdf

3. Andrew Nieland, Lend Lease (2013) Building with Cross-Laminated Timber: is this our future? Available at http://www.timberqueensland.com.au/Docs/News%20and%20Events/Events/Andrew-Nieland_web.pdf

4. The average CO2 emissions for a passenger car in Australia in one year (2010) is 3.56 tonnes. Calculation based on information in Australian Bureau of Statistics (2012) Year Book Australia 2012. Available at http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/1301.0~2012~Main%20Features~Transport%20activity~187 & Australian Government (2008) Greenhouse gas emissions calculator. Available at http://www.environment.gov.au/settlements/transport/fuelguide/environment.html

5. Durlinger, B., Crossin, E. and Wong, J. (2013) Life Cycle Assessment of a cross laminated timber building. Available at http://www.fwpa.com.au/sites/default/files/PRA282-1112_Life-Cycle_Assessment_of_a_cross_laminated_timber_building.pdf

Calculations:

Parameter

Unit

Value

Reference

Average distance a passenger vehicle travels  in one year

km

13,900

ABS 2012

Average rate  fuel consumption for passenger vehicle is

litres / 100 kilometres

Petrol         11.1

Diesel         11.4

LFG/CNG   13.6

ABS 2012

Proportion of fuel used by passenger cars

%

Petrol         84%

Diesel         8%

LFG/CNG   8%

ABS 2012

CO2 emissions by fuel type

 

kg CO2 emissions / litre of fuel consumed

Petrol         2.3

Diesel         2.7

LFG/CNG   1.6

Australian Government 2008

Average CO2 emissions for a passenger  car in one year

CO2 emissions (tonnes)

3.56 tonnes

Calculated

Average CO2 emissions (in tonnes) for a passenger car in Australia over one year = [(13,900 x 11.1 x 84% x 2.3) + (13,900 x 11.4 x 8% x 2.7) + (13,900 x 13.6 x 8% 1.6)] / 1000

 

 

The interiors are like most apartments, lined with plasterboard and then painted. Other than a featured CLT wall there is no indication inside the apartments that the building is constructed from timber.

The featured CLT wall is a clear coat seal to blend in with the light colours used elsewhere in the interior. An Australian hardwood blackbutt engineered wood floor is laid throughout the living area.

The fire stairs and stair well however are exposed CLT.

Building with Wood

Fire benefits

 

Fire resistance is the key issues that needed to be addressed as some timber applications do not meet the deemed-to-satisfy building regulations (More details in the Structure tab).

The walls are generally 128 mm thick of CLT with 13 mm fire resisting plasterboard direct fixed both sides. The bare timber wall used as a feature in the apartment is 128 mm thick of CLT. All required walls achieve the deemed to satisfy fire rating required of FRL of 90/90/90

The floor is generally 146 mm thick with 2 layers of 16 mm fire resisting plasterboard again direct fixed. The floors again achieve the fire rating required of FRL of 90/90/90.

The external wall uses a combination of fire resistant plasterboard and the char capacity of timber itself and was considered through fire safety engineering analysis to achieve the deemed to satisfy fire rating from the inside but through fire safety engineering analysis for a fire exposure from outside. The outer layer of CLT to one elevation where the building is exposed within 6m of another allotment is thickened to provide the resistance from fire in that direction.

Penetrations through all fire rated elements are dealt with in the usual methods however extensive testing pursuant to the Australian Standards was undertaken to demonstrate compliance in accordance with the standard and applicable requirements of Part A of the National Construction Code Series - Volume One, Building Code of Australia.

Sprinklers are also used. They were not included as deemed to satisfy but allowed consideration of particular concessions pursuant to Victoria variation to the National Construction Code Series - Volume One, Building Code of Australia.  It is also noted that sprinklers provide social sustainability to the occupants of the building through minimizing any disruption / relocation in the event of a fire emergency.

 

Timbers used in this case study:

Exterior

Interior

Internal Paneling: 

Shear Walls - CLT - European Spruce

Featured CLT wall - European Spruce

Architrave: 

Timber (finger jointed pine)

Doors: 

Timber - solid core fire doors to entries, and hollow core to interior

Joinery Cabinetry: 

HMR Board

Interior Stairs: 

Fire stairs: CLT - European Spruce

Penthouse apartments: Victoria ash

 

Interior Rails Balustrades: 

Penthouse apartments: Victoria ash

 

Are you looking for a supplier?

Social Media Feeds